23 research outputs found

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Changing prevalence of hepatitis B virus genotypes in Iceland

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldAt present eight hepatitis B virus (HBV) genotypes have been characterized: A to H. The most common genotype in Northern Europe is genotype A. So far there is no record of the specific HBV genotype distribution in Iceland. Iceland has a small population whose homogeneity has changed due to increasing migration during the past decades. The distribution of HBV genotypes in Iceland was analyzed using sera from 170 Icelandic patients. The samples were obtained before 1989, during an HBV epidemic among intravenous drug users in 1989 to 1992 and after 1994. A fragment of the HBV S-gene was amplified, sequenced and subjected to phylogenetic analysis. Among samples derived before 1989 genotypes A, C, and D were found. Most of the samples diagnosed during the epidemic belonged to genotype D and a smaller portion to genotype A. This suggests that the epidemic was most likely caused either by an endogenous HBV strain or by a strain imported from Europe or the USA. Among samples obtained after 1994, genotypes A to E and G were found, but the majority were of genotypes A, C, and D. This is consistent with an increase in migration and immigration from regions in Asia and Africa during the past 10 years. Thus, the changing prevalence of HBV genotypes in a small isolated community such as Iceland reflects the influence of migration and increasing contacts with regions outside the Western World
    corecore